Where have we come with breeding for CH₄ emissions? *Update from international collaborations*

Y. de Haas, E. Wall, P.C. Garnsworthy, B. Kuhla, E. Negussie, J. Lassen

Where have we come with breeding for CH_4 emissions?

The Innovation Fund Denmark's Grand Solution Prize is awarded to three researchers for their breeding of climate-friendly cows

Peter Løvendahl from the Department of Molecular Biology and Genetics at Aarhus University, Jan Lassen from Viking Genetics and Henrik Bjørn Nielsen from the Technical University of Denmark receive the Innovation Fund Denmark's Grand Solution Prize for the breeding of climate-friendly cows, which alone in Denmark ensures a reduced emission equivalent to 90,000 tonnes of CO₂ a year. The prize was awarded by Søren Pind, Minister for Higher Education and Science.

2018.01.29 | LISBETH HEILESEN

The three recipients of the Innovation Fund Denmark's Grand Solution Prize. Left: Senior Researcher Peter Løvendahl, Department of Molecular Biology and Genetics, Aarhus University, Project Manager Jan Lassen, Viking Genetics and Chief Scientific Officer Henrik Bjørn Nielsen, The Technical University of Denmark. Photo: Maiken Kestner.

Discussion areas in different consortia focus on:

- 1. Pros and cons of several trait definitions for methane emission;
- 2. Proxies for methane emissions to be used for genetic evaluations;
- 3. Protocols for collating large-scale methane measurements using different techniques; and
- 4. Benefits for producers when incorporating methane emissions into national breeding strategies.

Definitions of methane phenotypes

Trait	Definition	Strength	Weakness
Methane production	Methane production per day (I or g/d)	The pure trait that we want to improve	Highly correlated to feed intake and
			production level
Methane	Methane production	The phenotype of	Ratio trait so selection
intensity	per kg kg milk or	interest for the user	can be hard to
	live weight		incorporate properly
Methane	Methane production	The phenotype of	Ratio trait so selection
yield	per DMI	interest for the user	can be hard to
			incorporate properly
Residual	Difference observed	Nice statistical	Can be hard to explain
methane	and predicted	properties.	for users
production	methane production	Corrected for traits	
WAGENING	GEN	that influences	
UNIVERSITY & RESI	EARCH sooyears tits tool	methane production	

Aim: to reduce methane but still increase milk yield

- Ratio
- Residual Methane
- Multi-trait

 $I = Milk + \downarrow Methane/Milk$

I(Methane) = Milk + \downarrow (µ+ β Milk)

 $I = Milk + \downarrow Methane$

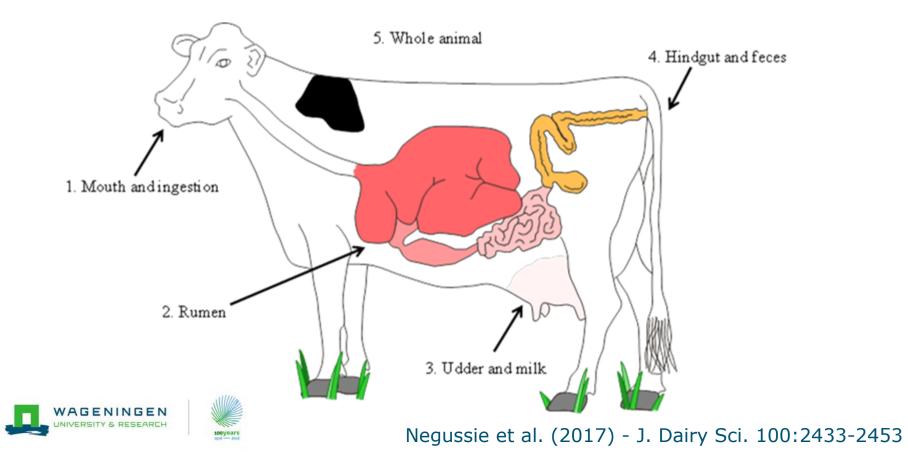
 \mathbf{r}_{q} and \mathbf{r}_{e} between CH₄ and Milk = 0.30

■Genetic gain (△G) for milk was kept constant at 65.8 kg

Zetouni et al. (2017) - J. Anim. Sci. 95:1921-1925

Conclusions on methane phenotype

- In order to improve a trait defined as a ratio, selecting for its component traits brings highest genetic progress
- All trait definitions serve certain purposes
 - Collecting methane production is, however, key

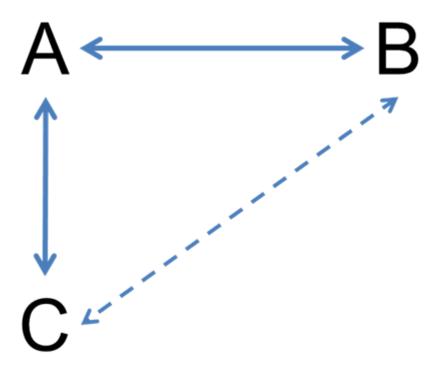

Proxies for methane

Proxies for methane

Conclusions on proxies

- No single proxy was found to accurately predict CH₄
- A combination of two or more proxies is a better solution
 - Combining proxies can increase the accuracy of predictions by up to 15 - 35%
 - Different proxies describe independent sources of variation in CH₄ and one proxy can correct for shortcomings in the other(s)

Protocols to collate methane data



Measuring methane

Can we link methods?

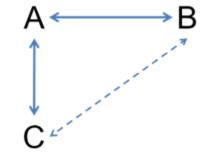
	Mass Flux Methods			Concentration Methods					
	Chamber	SF ₆	GF	LMD	NDIR Peaks	NDIR CO ₂ tracer1	FTIR CO ₂ tracer1	PAIR CO ₂ tracer2	
Respiration Chamber	1					Ē	Ē	Ē	
SF ₆	0.87	1							
GreenFeed	0.81	0.40 ^B	1						
LMD			0.77	1					
NDIR Peaks	0.89 ^A				1				
NDIR CO ₂ tracer1	0.72 ^A		0.64	0.56	0.58	1			
FTIR CO ₂ tracer1				0.60	0.53	0.97	1		
PAIR CO ₂ tracer2	0.80 ^{AB}							1	

Actual correlations

	Ma	ss Flux Metho	ods	Concentration Methods					
	Chamber	SF ₆	GF	LMD	NDIR Peaks	NDIR CO ₂ tracer1	FTIR CO ₂ tracer1	PAIR CO ₂ tracer2	
Respiration Chamber	1								
SF ₆	0.87	1							
GreenFeed	0.81	0.40 ^B	1						
LMD	(0.41 - 0.71)	(0.32 - 0.62)	0.77	1					
NDIR Peaks	0.89 ^A	(0.36 - 0.74)	(0.24 - 0.82)	(0.36 - 0.96)	1				
NDIR CO ₂ tracer1	0.72 ^A	(0.08 - 0.81)	0.64	0.56	0.58	1			
FTIR CO ₂ tracer1	(0.31 - 0.76)	(-0.26 – 0.71)	(0.48 - 0.70)	0.60	0.53	0.97	1		
PAIR CO ₂ tracer2	0.80 ^{AB}	(0.44 – 0.80)	(0.18 - 0.80)	(0.16 - 0.89)	(0.59 - 0.85)	(0.01 - 0.83)	(-0.23 - 0.83)	1	

Inferred correlations

	Ма	ss Flux Metho	ods	Concentration Methods					
	Chamber	SF ₆	GF	LMD	NDIR Peaks	NDIR CO ₂ tracer1	FTIR CO ₂ tracer1	PAIR CO ₂ tracer2	
Respiration Chamber	1	0.30	0.41	(0.10 - 0.69)	0.88 ^A	0.38	(0.09 -0.49)	0.70 ^A	
SF ₆	0.87	1	0.34	(0.07 - 0.56)	(0.09 - 0.55)	(-0.14 - 0.68)	(-0.25 - 0.53)	(0.06 - 0.84)	
GreenFeed	0.81	0.40 ^B	1	0.18	(0.04 - 0.51)	0.14	(-0.29 - 0.55)	(0.06 - 0.66)	
LMD	(0.41 - 0.71)	(0.32 - 0.62)	0.77	1	(0.31 - 0.86)	0.18	0.20	(0.31 - 0.67)	
NDIR Peaks	0.89 ^A	(0.36 - 0.74)	(0.24 - 0.82)	(0.36 - 0.96)	1	0.14	0.15	(0.32 - 0.65)	
NDIR CO ₂ tracer1	0.72 ^A	(0.08 - 0.81)	0.64	0.56	0.58	1	0.79	(0.11 - 0.74)	
FTIR CO ₂ tracer1	(0.31 - 0.76)	(-0.26 - 0.71)	(0.48 - 0.70)	0.60	0.53	0.97	1	(-0.29- 0.75)	
PAIR CO ₂ tracer2	0.80 ^{AB}	(0.44 – 0.80)	(0.18 - 0.80)	(0.16 - 0.89)	(0.59 - 0.85)	(0.01 - 0.83)	(-0.23 - 0.83)	1	



Concordance (CCC)

Conclusions on collating data

- Generally good correlation between methods
- Concordance is less good, but generally positive
- Combining predictions shows promise, but reveals some biases
- Combining data for genetic analysis does it require perfect agreement?

Genetics of methane

What is the genetic component of methane?

Heritabilities: Dairv 06) Sheep lities 0.04) • MeP: 0.29 (0.05) MeY: 0.13 (0.02) Jen et al., 2016 etween redicted methane Pinares-Pa Beef • MeP w DMI: 0.35 De Haas et al., 2012 (0.10)• MeP w MIR: 0.12 Donoghue et al., 2013 Kandel et al., 2013

What are correlations with other traits?

<u>Genetic correlations (MeI)</u> Milk yield and content • ~ -0.6, -0.1, -0.4 Fertility: 0.3 BSC: 0.3 Longevity: -0.1 Kandel et al., 2017

Genetic correlations (MeP)
Milk yield

0.1

Body weight: -0.2
Lassen et al., 2016

Selection index with methane

Starting from current total merit indices in

- Scenario 1: Including CH₄ in current breeding goals
- Scenario 2: Including CH₄, whilst restricting the genetic gain of CH₄ to zero
- Scenario 3: Including CH₄, whilst assigning an economic cost to CH₄ (3 shadow prices were investigated)

Scenarios

	Scenario 1		Scena	ario 2	Scen	ario 3
		Genetic gain CH₄				
UK	£85.2	8.48g/d				
ES	€91.9	7.30g/d				
NL	€228.3	3.93g/d				

sooyears

Scenarios

	Scenario 1		Scen	ario 2	Scenario 3
	Index value	Genetic gain CH₄	Total change	Percentage change	
UK	£85.2	8.48g/d	-£12.85	-14%	
ES	€91.9	7.30g/d	-€11.09	-12%	
NL	€228.3	3.93g/d	-€7.23	-3%	

sooyears

Scenarios

	Scenario 1		Scen	ario 2	Scenario 3	
	Index value	Genetic gain CH₄	Total change	Percentage change		Carbon price (high)
UK	£85.2	8.48g/d	-£12.85	-14%	-0.59	-1.75
ES	€91.9	7.30g/d	-€11.09	-12%	-0.63	-1.85
NL	€228.3	3.93g/d	-€7.23	-3%	-0.31	-0.88

Conclusions on benefit for producers

- Breeding is a mitigation tool
 - Heritabilities 0.1-0.4
- Benefit for producers depends on incentives and carbon taxes/prices

Climate change means meat taxes are 'increasingly probable'

By Matt Mace | edie.net

🋗 15 dec. 2017

dvertisement

Summarizing conclusions

- Enteric methane is a heritable trait
 - highly genetically correlated with DMI
- Most useful proxies relate to feed intake, milk mid-infrared spectral data, and fatty acids in the milk
- International collaboration is essential to make progress in this area
 - sharing ideas, experiences, protocols and phenotypes
 - coming to a consensus regarding what phenotype to collect and to select for
 - collating large enough datasets for genetic evaluations

Acknowledgements

METHAGENE

COST is supported by the EU Framework Programme Horizon 2020

ASGGN

The animal selection, genetics and genomics network.

ON AGRICULTURAL GREENHOUSE GASES